Msodfokú Egyenlet Diszkriminánsa

Monday, 13-May-24 02:51:46 UTC

4. Az x 2 – 6x + 7 = 0 egyenlet gyökeinek kiszámítása nélkül írjuk fel egy olyan másodfokú egyenletet, amelynek a gyökei az adott egyenlet a) gyökeinek 5-szörösei; b) gyökeinél 5-tel nagyobbak! Megoldás: Az ax 2 + bx + c = 0 másodfokú egyenleben szereplő paraméterek: Számítsuk ki az egyenlet diszkriminánsát: D = b 2 - 4ac = (-6) 2 - 4×1×7 = 36 - 28 > 0 Az egyenletnek van megoldása. Matematika - 10. osztály | Sulinet Tudásbázis. Gyökeire igaz, hogy x 1 + x 2 = 6 és x 1 x 2 = 7 A keresett egyenlet legyen y 2 + by + c = 0 a / A keresett egyenlet gyökeinek összege egyrészt igaz, y 1 + y 2 = - b, másrészt mivel a gyökei 5-ször akkorák, y 1 + y 2 = 5x 1 + 5x 2 = 5( x 1 + x 2) = 5×6 = 30. Tehát b = - 30. A keresett egyenlet gyökeinek szorzata egyrészt y 1 y 2 = c, másrészt mivel a gyökei 5-ször akkorák, y 1 y 2 = 5x 1 × 5x 2 = 25 x 1 x 2 = 2 5×7. Tehát c = 175. A keresett egyenlet y 2 + 30y + 175 = 0, ill. a( y 2 + 30y + 175) = 0 ahol a ≠ 0 b / A keresett egyenlet gyökeinek összege egyrészt igaz, y 1 + y 2 = - b, másrészt mivel a gyökei 5-tel nagyobbak, y 1 + y 2 = x 1 +5 + x 2 +5 = x 1 + x 2 + 10 = 6 + 10= 16.

  1. Matematika - 10. osztály | Sulinet Tudásbázis

Matematika - 10. OsztáLy | Sulinet TudáSbáZis

Megoldóképlet, diszkrimináns A másodfokú egyenletek rendezett alakja: Ahol a négyzetes tag együtthatója a és, b az elsőfokú tag együtthatója, c konstans. Azért, hogy ne kelljen minden egyes másodfokú egyenletnél hosszadalmas átalakítást végeznünk, bebizonyítottuk és megtanultuk a másodfokú egyenlet megoldóképletét: Láttuk, hogy a kifejezés előjele nagyon fontos, ezért ennek a kifejezésnek önálló nevet is adtunk. Ezt a másodfokú egyenlet diszkriminánsának nevezztük, D-vel jelöltük: Azt, hogy az egyenletnek van-e valós gyöke, a diszkrimináns határozza meg: Ha, akkor az egyenletnek nincs valós gyöke. Másodfokú egyenlet diszkriminánsa. Ha, akkor az egyenletnek két valós gyöke van. Ha, akkor az egyenlet két valós gyöke egyenlő.

A keresett egyenlet gyökeinek szorzata egyrészt y 1 y 2 = c, másrészt mivel a gyökei 5-ször akkorák, y 1 y 2 = ( x 1 + 5) (x 2 + 5)= x 1 x 2 + 5( x 1 + x 2) + 25 = 7 + 5×6 + 25. A keresett egyenlet y 2 - 16y + 62 = 0, ill. a( y 2 - 16y + 62) = 0 ahol a ≠ 0 5. Az egyenlet megoldása nélkül számítsa ki az x 1 2 x 2 + x 1 x 2 2 kifejezés értékét, ahol x 1 és x 2 az 2x 2 +x – 6 = 0 egyenlet két gyöke! Az ax 2 + bx + c = 0 másodfokú egyenleben szereplő paraméterek: Számítsuk ki az egyenlet diszkriminánsát: D = b 2 - 4ac = 1 2 - 4×2×(-6) = 1 + 48 = 49 > 0 Az egyenletnek van megoldása. Gyökeire igaz, hogy x 1 + x 2 = -1/2 és x 1 x 2 = - 3 Alakítsuk át a feladatban szereplő kifejezést: x 1 2 x 2 + x 1 x 2 2 = x 1 x 2 ( x 1 + x 2) = (-1/2)(-3) = 3/2 x 1 2 x 2 + x 1 x 2 2 = 3/2 6. A 3x 2 + 5(m – 4)x – 3 = 0 egyenlet egyik gyöke a másiknak ellentettje. Melyek ezek a gyökök? Az ax 2 + bx + c = 0 másodfokú egyenleben szereplő paraméterek: Számítsuk ki az egyenlet diszkriminánsát: D = b 2 - 4ac = 25(m - 4) 2 - 4×3×(-3) = 25m 2 - 200m + 436 Az egyenletnek akkor és csakis akkor van megoldása, ha D = b 2 - 4ac = 25(m - 4) 2 - 4×3×(-3) = 25(m - 4) 2 + 36 ≥ 0.